Study program	Level of studies			First cycle		
	Study program na	ame		Physics Education		
Course name	MATHEMATICS II					
Course ID	Semester	Cour	se status	ECTS of	credits	L+E
PMAT150	II	MAN	DATORY	8		4+4
Lecturer						
Aims and intended learning outcomes	 The objective of the course is for students to master fundamental knowledge in integral calculus of real functions of one real variable and ordinary differential equations, and to understand their importance and application in physics. The expected learning outcomes are as follows: Differentiate between types of integrals and solve them using various methods. Estimate integral values and examine convergence. Apply integral calculus to solve problems in geometry and physics. Expand a function to Fourier series and apply Fourier transformation. Solve various types of ordinary differential equations. Distinguish between types of solutions and solve problems with initial and boundary values. Utilize a formal presentation style (definition/theorem/proof or examples 					
	of use).	0				
Primitive function. Ind	efinite integral Ma		content	athod of part	tial integrati	ion Integration
value theorems. Rel						Incuons, mean
differential and integra volume, and surface electrostatics, gravity) Trigonometric and Fo transformation. Some First-order ordinary o singular solutions. Typ differential equations	al calculus). Impro area of revolution burier series. Expa applications in ph differential equation pes of ordinary dif (Cauchy's proble	oper integral . Some app ansion of a f nysics. ons. Cauch ferential equ em, solution	and indefinite and convergen lications of inte function into a y's initial value uations that car is). Linear sec	integrals (nce criteria. gral calculu Fourier serie problem. be integrationd-order co	fundamenta Surface ar us in physic es. Conver General, µ ted. Higher differential	ea, arc length cs (mechanics, gence. Fourier particular, and order ordinary equations with
differential and integra volume, and surface electrostatics, gravity) Trigonometric and Fo transformation. Some First-order ordinary of singular solutions. Typ	al calculus). Impro area of revolution burier series. Expa applications in ph differential equation pes of ordinary dif (Cauchy's problections).	oper integral . Some app ansion of a f nysics. ons. Cauch ferential equ em, solution Boundary v	and indefinite and convergen- lications of inte- function into a y's initial value uations that car is). Linear sec- alue problem. S	integrals (nce criteria. gral calculu Fourier serie problem. be integrationd-order co	fundamenta Surface ar us in physic es. Conver General, µ ted. Higher differential	al theorem of ea, arc length cs (mechanics) gence. Fourier particular, and order ordinary equations with
differential and integra volume, and surface electrostatics, gravity) Trigonometric and Fo transformation. Some First-order ordinary of singular solutions. Ty differential equations constant and non-con with constant coefficie	al calculus). Impro area of revolution burier series. Expa applications in ph differential equation pes of ordinary dif (Cauchy's problections).	oper integral . Some app ansion of a f nysics. ons. Cauch ferential equ em, solution Boundary v	and indefinite and convergen- lications of inte- function into a y's initial value uations that car is). Linear sec- alue problem. S	integrals (nce criteria. gral calculu Fourier serie problem. be integrationd-order co	fundamenta Surface ar us in physic es. Conver General, p ted. Higher differential near differe	al theorem of ea, arc length cs (mechanics, gence. Fourier particular, and order ordinary equations with
differential and integra volume, and surface electrostatics, gravity) Trigonometric and Fo transformation. Some First-order ordinary of singular solutions. Typ differential equations constant and non-con with constant coefficie Student v	al calculus). Impro area of revolution burier series. Expa applications in ph differential equation pes of ordinary dif (Cauchy's proble stant coefficients. ents. Some application workload (hours)	oper integral . Some app ansion of a f nysics. ons. Cauch ferential equ em, solution Boundary v ations in phy	and indefinite and convergen- lications of inte- function into a y's initial value uations that car is). Linear sec- alue problem. S	integrals (nce criteria. gral calculu Fourier serie e problem. be integrat ond-order c systems of li Gra	fundamenta Surface ar us in physic es. Conver General, µ ted. Higher differential near differe	al theorem o ea, arc length cs (mechanics gence. Fourier particular, and order ordinary equations with
differential and integra volume, and surface electrostatics, gravity) Trigonometric and Fo transformation. Some First-order ordinary of singular solutions. Ty differential equations constant and non-con with constant coefficie	al calculus). Impro area of revolution burier series. Expa applications in ph differential equation pes of ordinary dif (Cauchy's proble stant coefficients. ents. Some application workload (hours)	oper integral . Some app ansion of a f nysics. ons. Cauch ferential equ em, solution Boundary v ations in phy	and indefinite and convergen lications of inte function into a y's initial value uations that car is). Linear sec alue problem. S ysics.	integrals (nce criteria. egral calculu Fourier serie e problem. be integrat ond-order o systems of li Grae nethod	fundamenta Surface ar us in physic es. Conver General, µ ted. Higher differential near differe	al theorem of ea, arc length cs (mechanics) gence. Fourier particular, and order ordinary equations with intial equations
differential and integra volume, and surface electrostatics, gravity) Trigonometric and Fo transformation. Some First-order ordinary of singular solutions. Typ differential equations constant and non-con with constant coefficie Student v Lectures and Exercise	al calculus). Impro area of revolution burier series. Expa applications in ph differential equation pes of ordinary diff (Cauchy's problect stant coefficients. ents. Some application workload (hours) es 120	oper integral . Some app ansion of a f nysics. ons. Cauch ferential equ em, solution Boundary v ations in phy	and indefinite and convergen- lications of inte- function into a y's initial value uations that car is). Linear sec- alue problem. S /sics.	integrals (ince criteria. egral calculu Fourier serie e problem. b be integration ond-order of eystems of li Gramethod exam	fundamenta Surface ar us in physic es. Conver General, µ ted. Higher differential near differe	al theorem o ea, arc length cs (mechanics gence. Fourier particular, and order ordinary equations with intial equations
differential and integra volume, and surface electrostatics, gravity) Trigonometric and Fo transformation. Some First-order ordinary of singular solutions. Ty differential equations constant and non-con with constant coefficien Student v Lectures and Exercise Exam preparation	al calculus). Impro area of revolution burier series. Expa e applications in ph differential equation pes of ordinary diff (Cauchy's problect stant coefficients. ents. Some application workload (hours) es 120 80	oper integral . Some app ansion of a f nysics. ons. Cauch ferential equ em, solution Boundary v ations in phy	and indefinite and convergen- lications of inte- unction into a y's initial value uations that car is). Linear sec alue problem. S vsics. Assessment m Midterm	integrals (nce criteria. egral calculu Fourier serie e problem. be integrat ond-order c cystems of li Gra- nethod exam cam	fundamenta Surface ar us in physic es. Conver General, µ ted. Higher differential near differe	al theorem o rea, arc length cs (mechanics gence. Fourier particular, and order ordinary equations with initial equations Points 50
differential and integra volume, and surface electrostatics, gravity) Trigonometric and Fo transformation. Some First-order ordinary of singular solutions. Ty differential equations constant and non-con with constant coefficien Student v Lectures and Exercise Exam preparation	al calculus). Impro area of revolution burier series. Expa e applications in ph differential equation pes of ordinary diff (Cauchy's problect stant coefficients. ents. Some application workload (hours) es 120 80	oper integral . Some app ansion of a f hysics. ons. Cauch ferential equ em, solution Boundary v ations in phy)	and indefinite and convergen- lications of inte- function into a y's initial value uations that car s). Linear sec- alue problem. S vsics. Assessment m Midterm Final ex	integrals (nce criteria. egral calculu Fourier serie e problem. be integrat ond-order c cystems of li Gra- nethod exam cam	fundamenta Surface ar us in physic es. Conver General, µ ted. Higher differential near differe	al theorem o ea, arc length cs (mechanics gence. Fourier particular, and order ordinary equations with ntial equations Points 50 50
differential and integra volume, and surface electrostatics, gravity) Trigonometric and Fo transformation. Some First-order ordinary of singular solutions. Typ differential equations constant and non-con with constant coefficie Student v Lectures and Exercise Exam preparation Total 1. S. Hassani, M	al calculus). Impro area of revolution burier series. Expa e applications in ph differential equation pes of ordinary diff (Cauchy's problect stant coefficients. ents. Some application workload (hours) es 120 80	pper integral . Some app ansion of a f hysics. ons. Cauch ferential equ em, solution Boundary v ations in phy b Liter	and indefinite and convergen- lications of inte- function into a y's initial value uations that car s). Linear sec- alue problem. S /sics. Assessment n Midterm Final ex Tota	integrals (nce criteria. egral calculu Fourier serie e problem. n be integrat ond-order c systems of li Grae nethod exam am	fundamenta Surface ar us in physic es. Conver General, p ted. Higher lifferential near differe ding F	al theorem ea, arc le cs (mecha gence. For particular, -order ord equations ential equa <u>Points</u> 50 50 100