Study program	Cycle		First cycle	
	Study program		Physics Education	
Physics	GENERAL CHEMISTRY FOR PHYSICISTS			
Course ID	Semester	Course status	ECTS credits	L+E
POT2411	VI		4	2+1
Lecturer				
Aims and intended learning outcomes	Introducing stude naming, chemic electrochemistry.	•		of compounds changes and

Course syllabus

- 1. Types of substances. Separation of substances into pure substances. Properties and types of pure substances. Work in the chemical laboratory.
- 2. Relative atomic mass. Relative molecular mass. Mole.
- 3. Solutions and their properties. Quantitative calculations of solution composition. Decantation, distillation, filtration.
- 4. Diffusion and osmosis. Electrolyte solutions.
- 5. Colloid-dispersive systems. Colloids.
- 6. Periodic system of the elements.
- 7. General properties of the elements (atom size, ionisation energy, electron affinity, electronegativity, polarisation ability and polarisability, coordination number and oxidation state.) Molar mass determination (CO₂ or metal)
- 8. Classification of elements (s-, p-, d- and f- elements). Electrolytes. Galvanic elements.
- 9. Chemical bond ionic, covalent.
- 10. Chemical bond energy of covalent bond. Allotropy and isomorphism. Types of chemical reaction.
- 11. Energy changes in chemical reactions.
- 12. Main classes of inorganic compounds.
- 13. Concept of chemical equilibria in homogenous and heterogenous systems. Chemical equilibria.

Student work	doad (hours)	Assessment of knowledge and grading scale		
Literature and practical work	30+15	Grading scheme	Points	
Exam study time	55	Attendance	5 (minimum 3)	
Written papers	-	I exam	27,5 (minimum 15)	
Other (state)	-	II exam	27,5 (minimum 15)	
Total	100	Final exam	40 (minimum 22)	
		Total	100 (minimum 55)	

Literature

MANDATORY

- 1. Ivan Filipović, Stjepan Lipanović, Opća i anorganska hemija I dio, Školska knjiga Zagreb,1995. RECOMMENDED
 - 1. Emira Kahrović, Anorganska hemija, Bemust, 2005, Sarajevo
 - 2. Praktikum iz opšte hemije, interna skripta

Remarks