Study program	Level of studies		Third cycle	
	Title of the study program		Doctoral studies in physics	
Course title	MONTE CARLO SIMULATIONS IN RADIATIONS PHYSICS			
Course ID	Semester	Course status	ECTS credits	Teaching hours
PAP7071	I /II	Elective	10	30
Course aims and expected learning outcomes	The aim of the course is to educate students about the capabilities of the Monte Carlo simulations in particle physics. To understand the importance of the relevant physics determing the applicability of the simulation. To learn how, with what limits simulations can be used in real world problems raging from shileding calulation to radiaoactive meterial production. And at the end to have gained the releveant experiennce with the code FLUKA for general use.			

COURSE CONTENT

Lecture 1: Monte-Carlo Method

Lecture 2: FLUKA Introduction

Lecture 3: Input, Output and Plotting

Lecture 4: Physics models

Lecture 5: Sampling, Biasing and Transport

Lecture 6: Scoring and Running Options

Lecture 7: Combinatorial Geometry

Lecture 8: Electro-magnetic interactions

Lecture 9: Nuclear and Heavy Ion Interactions

Lecture 10: Neutron

Lecture 11: The FLUKA User Routines

Lecture 12: Applications – Dosimetry applications

Lecture 13: Voxels and Medical Applications

LITERATURE	ASSESSMENT OF LEARNING			
	Assessment Method	Points		
	Practice/Project	20		
1.https://fluka.cern/ 2. https://www.fluka.org/fluka.php	Seminar paper	30		
2. https://www.maka.org/maka.pmp	Presentation	50		
	Total	100		
Remarks				