Study program	Level of studies		Third cycle	
	Title of the study program		Doctoral studies in physics	
Course title	MACHINE LEARNING AND ARTIFICIAL NEURAL NETWORKS IN PHYSICS			
Course ID	Semester	Course status	ECTS credits	Teaching hours
PCS8011	1711	Elective	10	30
Course aims and expected learning outcomes The aim of the course is to develop practical skills in machine learning, artificial neural networks, and physics-informed neural networks. Students will learn how to apply these skills and techniques to real-world problems in various branches of physics.				
COURSE CONTENT				
 Programming tools; Overview of TensorFlow, PyTorch, and Scikit-Learn Data preprocessing Regression: linear, polynomial, support vector (SVR), decission tree, random forest Classification: logistic, k-nearest neighbors (KNN), support vector machines (SVM), decission tree, random forest Clustering: k-means Artificial neural networks Dimensionality reduction: principal component analysis (PCA), linear discriminant analysis (LDA), active subspace method (ASM) Applications of ML and ANN in physics Physics informed neural networks (PINN) 				
	LITERATURE		ASSESSMENT OF LEARNING	
1. S. Raschka, Y. Liu, V. Mirjalili, and D. Dzhulgakov, Machine		Assessment Method	Points	
Learning with PyTorch and Scikit-Learn: Develop Machine Learning and Deep Learning Models with Python, Packt			Projects	100
 Mueller, Physics- (<u>https://physicsba</u> R. Maziar, P. Per Physics-informed framework for so nonlinear partial 	. N. Thuerey, P. Holl, P. Schnell, F. Trost, K. Um, and M. Mueller, Physics-based Deep Learning, (<u>https://physicsbaseddeeplearning.org</u>), 2021.			100
Remarks				
Student will complete three projects, with two focusing on ML and ANN methods, and the third involving the application of PINN. Each of the first two projects will be worth a maximum of 30 points, while the third project will be worth a maximum of 40 points.				