Study program	Level of studies		Third cycle		
	Title of the study program		Doctoral studies in physics		
Course title	COMPUTATIONAL PHYSICS				
Course ID	Semester	Course status	ECTS credits	Teaching hours	
PTH7031	1 /11	Elective	10	30	
Course aims and expected learning outcomes	The aim of the course is that student acquire competences in numerical methods and their application in modeling various physical systems. Each project assignment consists of modeling and solving some of the physical problems that are related to students' PhD thesis work. Student will become familiar with available models and modeling techniques and trained to solve specific physical problems in that manner.				

COURSE CONTENT

Comparison of programming languages Fortran – C/C++ – Pyton.

Special functions. Solving linear algebraic equations. The eigenvalue problem. Laplace equation, heat conduction equation.

Monte Carlo methods. Minimization and maximization of functions.

Fourier transforms and spectral methods.

Nonlinear systems.

Application of higher level software packages - Matlab (Octave), Mathematica. Using the GSL libraries. Parallelization.

Project Jupyter (Jupyter Notebook, JupyterHub, and JupyterLab).

LITERATURE	ASSESSMENT OF LEARNING			
- W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery,	Assessment Method	Points		
Numerical Recipes, Third Edition, Cambridge University Press	Homework	30		
2007.	Seminar paper	30		
- M. Hjorth-Jensen, <i>Computational Physics</i> , University of Oslo,	Final exam	40		
2007.				
- R.H. Landau, M.J. Páez Mejiá, <i>C. C. Bordeianu,</i>				
Computational Physics: Problem Solving with Python, 3rd Edition, Wiley- VCH 2015				
- D. Landau and K. Binder, <i>Guide to Monte Carlo Simulations in Statistical Physics</i> , Third Edition, Cambridge University Press 2009.	Total	100		
- GSL Reference Manual, https://www.gnu.org/software/gsl/				
Remarks				