Study program	Level of studies		Third cycle		
	Title of the study program		Doctoral studies in physics		
Course title	ADVANCED QUANTUM FIELD THEORY				
Course ID	Semester	Course status	ECTS credits	Teaching hours	
PTH8011	I /II	Mandatory/Elective	10	30	
Course aims and expected learning outcomes	 Mastery of the mathematical tools required for exploring quantum field theory. Understanding of infrared and ultraviolet divergences. Familiarization with methods of renormalization for theories with spontaneously broken symmetries of Abel and Yang-Mills type. Acquisition of the mathematical apparatus necessary for studying processes within the standard model of elementary particle physics and its extensions. 				
COURSE CONTENT					

Radiative corrections in quantum field theory. Examples of infrared and ultraviolet divergences in quantum electrodynamics. Classification of operators and their level of divergence in quantum field theory. Introduction of mathematical apparatus related to the calculation of divergent integrals. Ward-Takahashi identities in quantum electrodynamics. Renormalization of perturbative theories. Renormalization of theories with spontaneous breaking of local Abelian symmetry. Study of renormalization group equations. Calculation of the Coleman-Weinberg potential. Calculation of higher (second) order radiative corrections. Example of a Yang-Mills type theory: quantum chromodynamics. Higgs mechanism. Massive vector fields. Anomalies in quantum theories with spontaneously broken Yang-Mills symmetry. Renormalization of theories with spontaneously broken ron-Abelian symmetries. Magnetic monopoles. Unification of interactions and associated coupling constants present in the standard model of elementary particle physics.

LITERATURE	ASSESSMENT OF LEARNING			
- Matthew D. Schwartz, Quantum Field Theory and the	Assessment Method	Points		
Standard Model, Cambridge University Press, 2014	Homework	30%		
- Michael E. Peskin, Dan V. Schroeder, <i>An Introduction To</i> <i>Quantum Field Theory</i> (Frontiers in Physics), Westview Press,	Seminar paper	30%		
Reprint edition (October 2, 1995).	Final exam	40%		
- A. Zee, Quantum Field Theory in a Nutshell, Princeton				
University Press, 2 edition (February 1, 2010). - Claude Itzykson, Jean-Bernard Zuber, <i>Quantum Field Theory</i> (Dover Books on Physics), Dover Publications (February 24, 2006).	Total	100		
Remarks				