Program	Level of studies		Second cycle		
	Program name		Physics		
Course name	SIMULATION AND DATA PROCESSING IN MEDICAL RADIATION PHYSICS				
Course ID	Semester	Course status	ECTS credits	L+E	
PCS9621	I	ELECTIVE	6	2+2	
Lecturer	Doc. dr. Adis Alihodžić, Prof. dr. Davorin Samek				
Aims and intended learning outcomes	The aim of the course is to teach the students to analyze and process physical data and medical images, and to learn appropriate sofware packages use. After mastering the course students can use MATLAB / Octave software packages for statistical processing data, process simulation and image processing.				

Course content

Stochastic and deterministic events. Graphical and numerical methods in statistics. Comparative studies. Measures of morbidity and mortality. Relative risk. Mantel-Heinsel method. Standardized Mortality Rate. Tools for statistics in MATLAB and Octave. Functions and apps to describe, analyze, and model data. Descriptive statistics. Generating random numbers for Monte Carlo simulations. Regression and classification algorithms. Correlation coefficient.

Multiple regression analysis. Regression model with several independent variables. Polynomial regression. Estimation and significance of regression parameters. Logistic regression. Medical image processing, analysis and visualization. Image segmentation, noise reduction, geometric transformation.

Student workload (hours)		Grading		
Lectures and Exercises	60	Assessment method	Points	
Exam preparation	90	Midterm exams	50	
Total	150	Final exam	50	
		Total	100	

Literature

- 1. Chap T. LE, Introductory Biostatistics, John Wiley & Sons, Inc., Hoboken, New Yersey, 2003
- 2. MathWorks, Statistics and Machine Learning Toolbox
- 3. MathWorks, Image Processing Toolbox

Remarks

The student must win a minimum of 55% of points on both midterm exam and final exam in order to successfully pass the exam.