Program	Level of studies		First cycle		
	Program name		Educational physics		
Course name	MATHEMATICAL ANALYSIS FOR PHYSICISTS I				
Course ID	Semester	Course status	ECTS	L+E	
POT1721	I	MANDATORY	7	3+3	
Lecturer	Prof. dr. Nacima Memić				
Aims and intended learning outcomes	Aim of the course is to develop the ability to deal with differential calculus. The students will be able to: -apply calculus in physics problemsuse various convergence tests describe the behaviour of differentiable functions.				

Course content

- 1. Axioms of the set of real numbers
- 2. Mathematical induction- Rational and irrational numbers-
- 3. The nested intervals theorem-Accumulation point theorem
- 4. Sequences-Limits- Number e
- 5. Series and sums
- 6. Series with positive terms
- 7. Convergence criteria of series
- 8. Real functions-Limits
- 9. Continuous functions- Elementary functions
- 10. Notion of derivative- Basic rules-
- 11. Higher order differentials
- 12. Basic theorems on calculus
- 13. L'Hopital rule
- 14. Taylor Formula
- 15. Convex functions

Student work	kload (hours)	Grading		
		Assessment method	Points	
Lectures and Exercises	90	Tests during course	50	
Exam preparation	85	Final exam	50	
Total	175	Total	100	

Literature

- V. A. Zorich, Mathematical analysis I, Universitext, Springer, Berlin, 2003.
 I. Ljaško i dr., Zbirka zadataka iz matematičke analize, IBC '98, 2002.

Remarks