Program	Level of studies		First cycle		
	Program name		Educational Physics		
Course name	Computational Physics I				
Course ID	Semester	Course status	ECTS credits	L+E	
PCS7611	VII	MANDATORY	6	2+2	
Lecturer	Prof. dr. Senad Odžak				
Aims and intended learning outcomes	The aim of the course is to introduce students at a more advanced level into Computational physics through lectures and practical exercises. It is expected that students successfully adopt the content of the course and that the acquired knowledge is successfully applied in their further academic education and/or scientific work.				

Course content

Computers in physics. Information in physics. Operational systems. Programming in physics. Comparative studies of high level programming languages (Fortran, C and/or others).

Student work	rload (hours)	Grading		
Lectures and Exercises	75	Assessment method	Points	
Exam preparation	70	Course Tests (Multiple assignments)	60	
Assignments	0	Final Exam (Theory)	40	
Other	5			
Total	150			
		Total	100	

Literature

- 1. Lecture Notes
- 2. L. Nyhoff, L. Sanford, FORTRAN 77 for Engineers and Scientists with an Introduction to Fortran 90 (4th ed.), 1995.
- 3. Brian W. Kernighan, Denis M. Ritchie, Programski jezik C, Savremena administracija, Beograd, 1989.

Remarks

The successful completion of the course implies achieving at least 55% of the total numer of points in both the course tests and final exam. Course tests imply solving physical problems with computers. All examinations are done by using the written method.