	Level of studies		First cycle	
	Program name		Educational	Physics
Course name		CLASSICAL MECHAN	ICS II FOR TEAC	CHERS
Course ID	Semester	Course status	ECTS cre	edits L+E
PTH4611	IV	MANDATORY	6	3+2
Nosilac programa		Prof. dr. Azra Gazik	egović - Busula	džić
Aims and intended learning outcomes	The aim of the course is to teach students how to analyze and solve the motion of a rigid body; mechanics in noninertial frames; relation of the equations of classical mechanics with the equations of modern physics through variational principles and Hamilton formalism. After mastering the subject, a student knows how to: - Describe and solve the motion of a rigid body; - Analyze and solve the equations of motion for a system that performs small oscillations. - apply the variational principles and Hamilton's formalism.			
	- apply the variat	Course content	nillon's formalism	
Eulerian angles. Mechanics in nonin Foucault's pendulum. Rigid body dynamics. a fixed point: equation equations, free prece Small oscillations, C	ertial frames: kir Rotation about a ns of motion, inert ession, inertia ellip oupled oscillators	nematics and dynamic fixed axis: moment of i ia tensor, principal axes soid. Some special cas s, normal modes and	s, inertial forces nertia, physical pe and principal mo es. General rigid	otion. Angular velocity. s. Examples: free fall, endulum. Rotation about oments of inertia, Euler's body motion, examples.
Variational principles Catenary. Fermat's p Hamiltonian mechani	of mechanics: Ha principle. cs. Hamilton's eq	amilton's principle, Ma	et. Canonical tra	e-Jacobi's principle. The nsformations, Hamilton-
Variational principles Catenary. Fermat's p Hamiltonian mechani Jacobi equation. Sym	of mechanics: Ha principle. cs. Hamilton's eq	amilton's principle, Ma uations. Poisson brack	et. Canonical tra	e-Jacobi's principle. The nsformations, Hamilton-
Variational principles Catenary. Fermat's p Hamiltonian mechani Jacobi equation. Sym Student v	of mechanics: Ha principle. cs. Hamilton's eq metries and conse workload (hours)	amilton's principle, Ma uations. Poisson brack ervation laws. E. Noeth	et. Canonical tra er 's theorem. Gradir	e-Jacobi's principle. The nsformations, Hamilton-
Variational principles Catenary. Fermat's p Hamiltonian mechani Jacobi equation. Sym Student v Lectures and Exercise	of mechanics: Ha principle. cs. Hamilton's eq metries and conse workload (hours)	amilton's principle, Ma uations. Poisson brack ervation laws. E. Noeth Assessme	et. Canonical tra er 's theorem. Gradir	e-Jacobi's principle. The nsformations, Hamilton- ng
Variational principles Catenary. Fermat's p Hamiltonian mechani Jacobi equation. Sym Student v Lectures and Exercise Exam preparation	of mechanics: Ha principle. cs. Hamilton's eq imetries and cons workload (hours) es 75	amilton's principle, Ma uations. Poisson brack ervation laws. E. Noeth Assessme Midte	et. Canonical tra er 's theorem. Gradir nt method	e-Jacobi's principle. The nsformations, Hamilton- ng Points
Variational principles Catenary. Fermat's p Hamiltonian mechani Jacobi equation. Sym Student v Lectures and Exercise Exam preparation	of mechanics: Ha principle. cs. Hamilton's eq imetries and conse workload (hours) es 75 75	amilton's principle, Ma uations. Poisson brack ervation laws. E. Noeth Assessme Midte	et. Canonical tra er 's theorem. Gradin nt method 'm exam	e-Jacobi's principle. The nsformations, Hamilton- ng Points 55
Catenary. Fermat's p Hamiltonian mechani Jacobi equation. Sym	of mechanics: Ha principle. cs. Hamilton's eq imetries and conse workload (hours) es 75 75	amilton's principle, Mar uations. Poisson brack ervation laws. E. Noeth Assessme Midte	et. Canonical tra er 's theorem. Gradin nt method 'm exam	e-Jacobi's principle. The nsformations, Hamilton- ng Points 55 45