Program	Level of studies		First cycle	
	Program name		Physics	
Course name	INTRODUCTION TO COMPUTER SCIENCE FOR PHYSICISTS II			
Course ID	Semester	Course status	ECTS credits	L+E
PCS2211	II	ELECTIVE	2	0+2
Lecturer	Prof. dr. Senad Odžak			
Aims and intended learning outcomes	The objective of the course is to introduce students to perform various calculations in the Mathematica software package. It is expected that students successfully adopt the content of the course and that the acquired knowledge is successfully applied in their further academic education and/or scientific work.			

Course content

Introduction to Mathematica package. Manipulations with numbers. Manipulations with symbolic expressions. Logical terms and their use. Solving equations, inequalities, and systems. Manipulations with lists, vectors and matrices. Function graphs. Examples in physics. Introduction to procedural programming. Basic numerical calculations. Export and import of data. Examples in physics.

Student work	kload (hours)	Grading		
Lectures and Exercises	30	Assessment method	Points	
Exam preparation	15	Course Test	50	
Assignments	0	Final Exam	50	
Other	5			
Total	50			
		Total	100	

Literature

- 1. Lecture Notes
- 2. Ž. Jurić, Interaktivna računanja u programskom paketu Mathematica, skripta, PMF, Sarajevo, 2006.
- 3. S. Wolfram, The Mathematica Book, Cambridge University Press, Cambridge, 2003.

Remarks

The successful completion of the course implies achieving at least 55% of the total number of points in both the partial and final exam.